Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028840
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

June 2011
6684 Statistics S2
Mark Scheme

Question Number	Scheme	Marks
1. (a)	The list of ID numbers	B1 (1)
(b)	$F \sim \mathrm{~B}(50,0.02)$	B1 B1 (2) 3
Notes: (a) (b)	B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks $1^{\text {st }}$ B1 for Binomial distribution $2^{\text {nd }}$ B1 for $n=50$ and $p=0.02$ or $(50,0.02)$ $\mathrm{NB}(0.02,50)$ is B0 $\mathrm{Po}(1)$ alone is B 0 B 0 For a probability table $\overline{1^{\text {st }} \mathrm{B} 1 \text { Use of } \mathrm{B}(50,0.02)} \mathrm{NB} \mathrm{P}(X=0)=0.3642$ $2^{\text {nd }} \mathrm{B} 1$ Table must have all 50 values and their probabilities.	

:
advancing learning, changing lives

Question Number	Scheme Marks
2. (a)	Poisson ${ }^{\text {B1 }}$
(b)	
(c)	Let $Y=$ the number of vehicles in 10 s then $Y \sim \operatorname{Po}(6)$ Tables: $\mathrm{P}(Y \leq 10)=0.9574$ so $\mathrm{P}(Y \geq 11)=0.0426$ so needs $\underline{11}$ vehicles
Notes: (a) (b)	B1 for Poisson or Po. Ignore their value for the mean. $1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}: \mu / \lambda=9$ or $\mu / \lambda=36$ $2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}: \mu / \lambda>9$ or $\mu / \lambda>36$ One tail $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 11)$ or writing $\mathrm{P}(X \leq 14)=0.9585$ or $\mathrm{P}(X \geq 15)=0.0415$. May be implied by correct CR.or probability $=0.197$ A1 for 0.197 or a correct CR. Allow $X>14$. NB $\mathrm{P}(X \leq 11)=0.8030$ on its own scores M1A1 $2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H_{0} ". Ignore comparisons. $2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1. Two tail $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 11)$ or writing $\mathrm{P}(X \leq 15)=0.9780$ or $\mathrm{P}(X \geq 16)=0.022$. May be implied by correct CR. or probability $=0.197$ A1 for 0.197 or $\mathrm{CR} X \geq 16$. Allow $X>15$. NB $\mathrm{P}(X \leq 11)=0.8030$ on its own scores M1A1 $2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept H_{0} ". Ignore

:
advancing learning, changing lives

Question Number	Scheme		Marks
	comparisons. $2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. N M1A1.	A correct contextual statement on its $p<0.025 \text { or } p>0.975$ significant/ reject $\mathrm{H}_{0} /$ In CR Sufficient evidence to switch on the speed restrictions	own scores
(c)	B1 for identifying Po(6) - may be implied by use of correct tables M1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by correct answer of 11 A1 cao do not accept $X \geq 11$ NB answer of 11 with no working gains all three marks.		
	Mode $=3$ from graph		B1
(b)	$\int_{0}^{3} k x^{2} \mathrm{~d} x=0.5 \Rightarrow\left[\frac{k x^{3}}{3}\right]_{0}^{3}=0.5$ So $\frac{27 k}{3}-0=0.5 \Rightarrow k=\frac{1}{18}$ (using median $=3$)		M1 A1 M1d A1 (4)
(c)	$\begin{aligned} & \text { Height of triangle }=\frac{1}{18} \times 3^{2}=\frac{1}{2} \\ & \text { Area of triangle }=\frac{1}{2} \times(a-3) \times \frac{1}{2}=\frac{1}{2} \end{aligned}$		B1ft M1 A1 (3)
(d)	From graph distribution is negative skew (left tail is longer) $\mu<$ median for negative skew so $\mathrm{E}(X)<3$$\text { [N.B. } \left.\mathrm{E}(X)=2 \frac{23}{24}\right]$		B1 B1d (2) $\mathbf{1 0}$
Notes: (b) (c)	$1^{\text {st }}$ M1 for attempt to integrate $\mathrm{f}(x)$ (need x^{3}). Integration must be in part (b) $1^{\text {st }} \mathrm{A} 1$ for correct integration. Ignore limits for these two marks. $2^{\text {nd }}$ M1 Dependent on the previous M mark being awarded. For use of correct limits and set equal to 0.5 - leading to a linear equation for k. No need to see 0 substituted. $2^{\text {nd }} \mathrm{A} 1$ for $k=\frac{1}{18}$ or exact equivalent NB $k=\frac{1}{18}$ with no working gains M0A0M0A0 $\mathrm{k}=\frac{1 / 2}{9}=\frac{1}{18}$ without sight of integration is MOAOMOA0 B1 for correct height of triangle using their k. ie $9 k$. May be seen in working for area of triangle. Or correct gradient of line ie $\frac{9 k}{(3-a)}$ o.e.		

:
advancing learning, changing lives

Question Number	Scheme	Marks
	M1 for a correct linear equation for a, in the form $\pm \frac{1}{2} \times(a-3) \times 9 k=\frac{1}{2}$ (Must see NB if they have stated their height and then used their height rather than $9 k$ allow M1 A1 cao NB stating $\mathrm{a}=5$ and then verifying area of the triangle $=0.5$ is acceptable. $\mathrm{NB} \mathrm{a}=5$ on its own is B0M0A0 SC Integration of both parts $=1$ or Integration of line $=0.5$ leading to $a^{2}-8 a+15=0$ M1 and if they identify $a=5 \mathrm{~A} 1$	e halves) gets B1
(d)	$1^{\text {st }}$ B1 for identifying negative skew $2^{\text {nd }}$ B1 dependent on previous B mark being awarded. For correct deduction $\mathrm{E}(X)<3$	
4 (a)	$\begin{aligned} & \frac{9.5-7}{10-7} \\ & =\frac{5}{6} \quad \text { awrt } 0.833 \end{aligned}$	M1 A1 (2)
(b)	$\begin{aligned} \mathrm{P}(\text { Longest }>9.5)=1-\mathrm{P}(\text { all }<9.5)=1-\left(\frac{5}{6}\right)^{3} & \\ & =\frac{91}{216} \text { or } 0.421 \end{aligned}$	M1 A1 (2)
(c)	$\mathrm{P}(\text { a stick }<7.6)=\frac{0.6}{3}=0.2$ Let $Y=$ number of sticks $($ out of 6$)<7.6$ then $Y \sim \mathrm{~B}(6,0.2)$ $\begin{aligned} \mathrm{P}(Y>4) & =1-\mathrm{P}(Y \leq 4) \\ & =1-0.9984 \\ & =0.0016 \text { or } \frac{1}{625} \end{aligned}$	B1 M1 M1 A1 (4)
Notes: (a) (b) (c)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} \mathrm{~d} x$ M1 for $1-(a)^{3}$ or $(1-a)^{3}+3(1-a)^{2} a+3(1-a) a^{2}$ A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability $1^{\text {st }} \mathrm{M} 1$ for writing or using $\mathrm{B}(6, p)$ may be implied by $n p^{x}(1-p)^{6-x}$ using their p and $n \geq$ $2^{\text {nd }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(Y \leq 4)$ or $n p^{5}(1-p)+p^{6}(n$ is an integer $>1)$ A1 cao NB 0.0016 with no working gets B0M0M0A0	
5. (a)	$X \sim \operatorname{Po}(5) ; \quad \mathrm{P}(X \leq 3)=0.2650$	M1 A1 (2)

:
advancing learning, changing lives

Question Number	Scheme	Marks
(b)	Let $Y=$ the no.of planks with at most 3 defects, $Y \sim$ Binomial $\begin{aligned} \mathrm{P}(Y<2) & =\mathrm{P}(Y \leq 1) \\ & =\left[0.735^{6}+6 \times 0.265 \times 0.735^{5}\right] \end{aligned}$ $=0.4987 \ldots \quad \text { awrt } 0.499 \text { or } 0.498$	M1 A1ft M1 A1 A1 (5)
(c)	$\begin{aligned} & \text { Let } T=\text { total number of defects on } 6 \text { planks, } T \sim \operatorname{Po}(30) \text { so } T \approx S \sim \text { Normal } \\ & \\ & \begin{array}{rlr} S \sim \mathrm{~N}(30,30) \\ \mathrm{P}(T<18) & =\mathrm{P}(S<17.5) \\ & =P\left(z<\frac{17.5-30}{\sqrt{30}}\right) & \\ & =\mathrm{P}(Z<-2.28 \ldots) \\ & =0.01123 \ldots & \text { awrt } \mathbf{0 . 0 1 1 2} \text { or } \mathbf{0 . 0 1 1 3} \end{array} \end{aligned}$	M1 A1 M1 M1 A1 A1 (6) $\mathbf{1 3}$
Notes: (a) (b) (c)	M1 for identifying $\operatorname{Po}(5)$ - it should be clearly seen somewhere or implied A1 for correct probability. Allow 0.265 $1^{\text {st }}$ M1 for writing or using the binomial - may be implied by use of $n q^{x}(1-q)^{6-x}$ with $n \geq$ $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $n=6$ and $p=$ their (a) may be implied by $6 p(1-p)^{5}$ or $(1-p)^{6}$ NB if they write $\mathrm{B}(6,(\mathrm{a}))$ they get M1 A1 $2^{\text {nd }} \mathrm{M} 1$ for writing $\mathrm{P}(Y \leq 1)$ or $\mathrm{P}(Y=0)+\mathrm{P}(Y=1)$ or $(1-q)^{6}+\boldsymbol{n} q(1-q)^{5}$ with $n \geq 1$ $2^{\text {nd }} \mathrm{A} 1(1-p)^{6}+6 p(1-p)^{5}$ where $p=$ their (a) $3^{\text {rd }} \mathrm{A} 1$ for awrt 0.499 SC use of a probability in the tables - lose last two marks - could get M1A1M1 M0 A0 $1^{\text {st }}$ M1 for a normal approx $1^{\text {st }} \mathrm{A} 1$ for correct mean and sd $2^{\text {nd }}$ M1 for use of continuity correction, either 17.5 or 18.5 or 42.5 or 41.5 seen $3^{\text {rd }}$ M1 Standardising with their mean and their sd and 17.5 or 18 or 18.5 or 41.5 or 42 NB if they have not written down a mean and sd then they need to be correct in the stand to gain this mark. $2^{\text {nd }} \mathrm{A} 1$ for $z= \pm 2.28$ or better. May be awarded for $\pm \frac{17.5-30}{\sqrt{30}}$ [NB no continuity corr 2.19] $3^{\text {rd }} \mathrm{A} 1$ for awrt 0.0112 or 0.0113 [NB no approximation gives $0.00727 \ldots$] SC using $\mathrm{P}(X<18.5)-\mathrm{P}(X<17.5)$ can get M1 A1 M1 M0A0A0	≥ 1 or 42.5 dardisation rection $z=$

\#
:i
advancing learning, changing lives

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{Scheme} \& ar \\
\hline \& \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: p=0.15 \quad \mathrm{H}_{1}: p \neq 0.15 \\
\& X \sim \mathrm{~B}(30,0.15) \quad \mathrm{P}(X \leq 1)=0.0480 \text { or } \mathrm{CR}: X=0 \\
\& (0.0480>0.025)
\end{aligned}
\] \\
not a significant result or do not reject \(\mathrm{H}_{0}\) or not in CR \\
there is no evidence of a change in the proportion of customers buying an item from the display.
\end{tabular}} \& B1 B1
M1
A1
M1
A1ft \\
\hline (b)

Notes: \& \multicolumn{3}{|l|}{| $\mathrm{H}_{0}: p=0.2 \quad \mathrm{H}_{1}: p>0.2$ |
| :--- |
| Let $S=$ the number who buy sandwiches, $S \sim \mathrm{~B}(120,0.2)$, $\begin{array}{rlr} S \approx W \sim \mathrm{~N}\left(24, \sqrt{19.2}^{2}\right) \\ \begin{array}{rlr} \mathrm{P}(S \geq 31) & =\mathrm{P}(W \geq 30.5) \\ & =\mathrm{P}\left(Z>\frac{30.5-24}{\sqrt{19.2}}\right) & \text { or } \end{array} \frac{x-0.5-24}{\sqrt{19.2}}=1.2816 \\ & {[=\mathrm{P}(Z>1.48 . .)]} & \\ & =1-0.9306 \\ & =0.0694 & \\ \end{array}$ |
| <0.10 so a significant result, there is evidence that more customers are purchasing sandwiches or the shopkeepers claim is correct. |} \& M1 A1

M1
M1

M1
A1
B1ft

\hline (a) \& \multicolumn{4}{|l|}{| $1^{\text {st }} \mathrm{B} 1$ for H_{0} must use $p \quad 2^{\text {nd }} \mathrm{B} 1$ for H_{1} must use p |
| :--- |
| $1^{\text {st }}$ M1 for writing or using $\mathrm{B}(30,0.15)$ - may be implied by correct CR |
| $1^{\text {st }} \mathrm{A} 10.0480$ or $X=0$. Allow $X \leq 0$. Ignore upper CR. NB Allow CR $X \leq 1$ if using one tail test. |
| $2^{\text {nd }}$ M1 A correct statement (see table below) Do not allow non-contextual conflicting statements |
| eg"significant" and "accept H_{0} ". Ignore comparisons |
| $2^{\text {nd }} \mathrm{A} 1$ for a correct statement in context. For context we need idea of change/decrease in number of customers buying from display - may use different words. NB A correct contextual statement on its own scores M1A1 |}

\hline (b) \& \multicolumn{4}{|l|}{| $1^{\text {st }} \mathrm{B} 1$ both hypotheses correct - must use p. |
| :--- |
| $1^{\text {st }}$ M1 for a normal approx |
| $1^{\text {st }}$ A1 for correct mean and sd |
| $2^{\text {nd }}$ M1 for use of continuity correction, either 30.5 or 31.5 or $(x \pm 0.5)$ seen |
| $3^{\text {rd }}$ M1 standardising with their mean and their sd and 30.5 , 31 or 31.5 or x or $(x \pm 0.5)$) |
| $4^{\text {th }}$ M1 for $1-$ tables value or 1.2816 |
| $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.069 or $x=30.1$ |
| $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ For a correct conclusion in context using their probability and 0.1 For context we need idea of more customers buying sandwiches - may use different words |}

\hline
\end{tabular}

advancing learning, changing lives

Question Number	Scheme			Marks
		One tail $0.1<p<0.9$ or Two tail $0.05<p<0.95$	One tail $p<0.1$ or $p>0.9$ or Two 0.05 or $p>0.95$	$\text { iil } p<$
	$2^{\text {nd }}$ M1	not significant/ accept $\mathrm{H}_{0} /$ Not in CR or contextual	significant/reject $\mathrm{H}_{0} / \mathrm{In} \mathrm{CR}$ or cont	tual
	$2^{\text {nd }}$ A1	There is no evidence of an increase in the proportion of customers buying sandwiches	There is evidence of a change/increa proportion of customers buying sand	in the wiches.
	SC using $\mathrm{P}(X<31.5)-\mathrm{P}(X<30.5)$ can get B1M1 A1 M1 M1M0A0B0			
7 (a)	\cap shape which does not go below the x-axis [condone missing patios] Graph must end at the points $(1,0)$ and $(5,0)$ and the points labelled at 1 and 5			$\begin{align*} & \hline \text { B1 } \tag{2}\\ & \text { B1 } \end{align*}$
(b)	$\mathrm{E}(X)=3$ (by symmetry)			B1 (1)
(c)	$\begin{aligned} {\left[E\left(X^{2}\right]=\int x^{2} \mathrm{f}(x) \mathrm{d} x\right.} & =\frac{3}{32} \int\left(6 x^{3}-x^{4}-5 x^{2}\right) \mathrm{d} x \\ & =\frac{3}{32}\left[\frac{6 x^{4}}{4}-\frac{x^{5}}{5}-\frac{5 x^{3}}{3}\right]_{1}^{5} \\ & =\frac{3}{32}\left(\left[\frac{6 \times 625}{4}-625-\frac{625}{3}\right]-\left[\frac{6}{4}-\frac{1}{5}-\frac{5}{3}\right]\right)=9.8 \quad(*) \end{aligned}$			M1 A1 M1 A1 cso (4)
(d)	$\begin{aligned} \text { s.d. } & =\sqrt{9.8-\mathrm{E}(X)^{2}}, \\ & =0.8944 \ldots \end{aligned}$		awrt 0.894	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(e)	$\mathrm{F}(1)=0 \Rightarrow \frac{1}{32}(a-15+9-1)=0$, leading to $\underline{a=7}$			M1 A1
(f)	$\mathrm{F}(2.29)=0.2449 \ldots, \mathrm{~F}(2.31)=0.2515 \ldots$ Since $\mathrm{F}\left(q_{1}\right)=0.25$ and these values are either side of 0.25 then $2.29<q_{1}<2.31$			$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
				(3)
(g)	Since the distribution is symmetric $q_{3}=5-1.3=\underline{3.7}$ cao			B1 (1)
(h)	We know $\mathrm{P}\left(q_{1}=2.3<X<3.7=q_{3}\right)=0.5$ so $k \sigma=0.7$$\text { so } k=\frac{0.7}{0.894 \ldots}=0.7826 . .=\text { awrt } 0.78$			M1
				17

advancing learning, changing lives

Question Number	Scheme		Marks
Notes: (c) (d)	This part is a "show that" therefore we need to see all the steps in the working $1^{\text {st }}$ M1 for showing intention of doing $\int x^{2} \mathrm{f}(x)$ and attempt to multiply out bracket $1^{\text {st }} \mathrm{A} 1$ for correct integration, cao, ignore limits for this mark. $2^{\text {nd }} \mathrm{M} 1$ for use of correct limits. Need to see evidence of subst both 5 and 1 . $2^{\text {nd }} \mathrm{A} 1$ for cso leading to 9.8. Do not ignore subsequent working for this final A mark. M1 for a correct expression for standard deviation, must include $\sqrt{\ldots}$ A1 allow awrt $0.894, \sqrt{0.8}, \frac{2 \sqrt{5}}{5}$ oe		
(e)	M1 for a correct method to find a. e.g $\mathrm{F}(5)=1$ or $\int_{1}^{5} f(x)=1$		
(f)	$\begin{aligned} & \text { M1 for an attempt at } \mathrm{F}(2.29) \text { or } \mathrm{F}(2.31) \\ & \text { a) } \\ & 1^{\text {st }} \mathrm{A} 1 \quad \text { for both values seen. awrt } 0.245 \text { and } 0.252 \\ & 2.305,-0.064 \\ & 2^{\text {nd }} \mathrm{A} 1 \quad \text { for comparison with } 0.25 \text { and stating } \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	put $\mathrm{F}(x)=0.25$ find 3 solutions state only 2.30 i	ir value of 6/6.75, nd stating
(h)	lies between 2.29 and 2.31 M1 For $k \sigma=$ awrt 0.7 A1 Allow awrt 0.78 NB a correct awrt 0.78 gains M1 A1	lies between 2.29	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit
Llywodraeth Cynulliad Cymru www.edexcel.com/quals

